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COMMENT 

Comparison of the Monte Carlo simulation and the 
hypernetted-chain theory for the one-dimensional strongly 
coupled plasma 

Y Furutani, Y Odat and H Totsuji 
Department of Electronics, Okayama University, 3-1-1 Tsushimanaka, 700 Okayama, Japan 

Received 20 December 1984 

Abstract. The Monte Carlo simulation for the one-dimensional one-component plasma 
model is camed out. We obtain the pair distribution function g2(x) of a periodic structure, 
confirming the Kunz prediction that the one-dimensional one-component plasma remains 
in a crystalline state for any value of the plasma parameter. The Monte Carlo results are 
then compared with those obtained from the hypernetted-chain equation. Although the 
correlation energies calculated from the two approaches agree fairly well, the hypernetted 
chain g2(x) never reproduces the periodic structure, demonstrating that this scheme does 
not apply to a crystalline state. 

1. Introduction 

The classical one-component plasma (OCP) model composed of charged sheets which 
interact through the one-dimensional ( I D )  Coulomb ponteital -e lxi ,  with e the electronic 
charge and crossover among themselves in the direction normal to their plane, had 
already been exploited two decades ago by Buneman (1959) and Dawson (1962) to 
investigate large-amplitude electron plasma oscillations. Statistical mechanics of such 
an OCP has been fully discussed by several authors (Lenard 1961, Edwards and Lenard 
1962, Baxter 1964, Kunz 1974, Choquard et al 1981). In particular, Kunz predicts that 
the I D O C P  remains in a crystalline state for any value of the I D  plasma parameter 
A (= Pe2AD), in that thermodynamic functions such as pressure have no singularity 
and the i D o c P  does not undergo any phase transition. Here, ,Ll = ( k B T ) - ’  and A D  

represents the I D  Debye length ( 2 p p e 2 ) - ’ ” .  Other notation is customary. 
On our side, we have long concentrated on the study of nodal expansions for a 

strongly coupled OCP, in view to elucidating the role of irreducible (bridge) graphs in 
three dimensions in the hypernetted-chain (HNC) approximation (Deutsch et al 1976, 
1981). In this respect, we should recall recent impressive efforts for improving the 
usual H N ~  scheme which assert that a family of bridge graphs gives a substantial 
contribution to the behaviour of the pair distribution function g2(x) in the short and 
intermediate ranges (Rosenfeld and Ashcroft 1979, Iyetomi and Ichimaru 1982, 1983). 

From the viewpoint of the nodal expansion, however, analysis of the simplest 
bridge graph of the third order in plasma parameter is hardly tractable in three 
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dimensions (Cohen and Murphy 1969, Furutani et a1 1981). The inocp offers a 
fortunate situation for this circumstance, since any bridge graph at least of the third 
and fourth orders in A and their resummed descendents can be evaluated analytically, 
which may then be used to check to what accuracy the nodal expansion approximation 
could reproduce the MC data. We thus find it necessary to carry out the MC run for 
the I D  OCP as a preliminary of the HNC equation study of a potential of average force 
w2(x), in which resummed reducible and bridge graphs of the third order in A are all 
incorporated. 

The purpose of this comment is to present the MC data and compare them with 
the routine HNC results which exclude completely, as a first rough approximation, any 
contribution of bridge graphs. Thorough study of these single-bonded and resummed 
reducible and bridge graphs and their contribution to g2(x) will be discussed in a 
separate paper. The comment is organised thus. In 0 2,  we derive an expression for 
the correlation energy, used to carry out the Monte Carlo (MC) run. In 0 3, the HNC 

scheme transcribed to the ID  ocp is briefly explained. Finally, concluding remarks 
which include the comparison of the correlation energy obtained from two different 
approaches are given in 0 4. 

2. MC simulation 

In order to evaluate the correlation energy of an infinite system, we divide the total 
system into a number of periodic unit cells, each including several tens of charged 
sheets. Assuming a rigid uniform background of opposite charge, the correlation 
energy u(xii) between the ith sheet at xi and thej th  sheet at xj and its images is given 
by 

KLo = 2 7 “  m = 0, *l, * 2 ,  . . . and xij = \xi - xJI. Here, Lo is the length of the unit cell 
which we take later as unity and K the reciprocal lattice vector. The prime indicates 
that the K = O  contribution is deleted from the sum. This is the I D  analogue of the 
~ D M C  simulation exploited by one of us (Totsuji 1978). Then, the total correlation 
energy between the ith sheet and the j th  sheet and its images can be written as 

2e2 1 - E’ 7 exp[ i K ( xy - nLo)]  L o ~ K K  

with n = 0, *l ,  * 2 , .  . . . Since u(xii) is periodic with period Lo, the correlation energy 
per unit cell between the sheets ij and their images is given by u(xii). The correlation 
energy of the unit cell is then calculated, by virtue of ( l) ,  as 

U =  v(xij)+jN0UM 
1 si < j s  No 

(3) 

with No the number of sheets within the unit cell and U,  the Madelung energy. 
Evaluating (3) explicitly, we obtain the correlation energy, normalised by the total 
thermal energy of sheets in the unit cell, which reads as 

NO No 1-1 No 
x?-2 x, x,- 1 (2i- l -No)x,+&N: 

, = 2  ] = 1  1=1  
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Here the sheets are numbered so that xj > xi when j > i and Lo is taken as unity. This 
is the expression we have utilised for the MC simulation. Though it remains to prove 
that U,  is independent of No, we have confirmed numerically that choice of two 
different No values does not affect UN, as indicated in table 1. 

Table 1. Effect of No on ULMc’ for A = 4 and 10. 

\ 

NO \ 4  10 
~~ 

16 3.120i0.050 17.05 f 0.08 
32 3.126*0.056 16.99 f 0.06 

The behaviour of g2(x) for three different A values is illustrated in figure 1. As 
was already mentioned in 0 1, the rigorous Baxter-Kunz theory predicts the I D  OCP to 
exhibit a crystalline structure (Wigner lattice), in the asymptotic domain, for any value 
of A, as small as it is. This general trend is clearly demonstrated by the MC g,(x): (1) 
the spacing of two adjacent peaks coincides with the mean separation a(=  l/No) 
between sheets and ( 2 )  a finite train of peaks with the same amplitude are observed 
within the cell. The values of U ,  evaluated from (4) for about a million of steps in 
the MC run are shown in the second column of table 2 ,  in view of comparison with 
those obtained from the HNC UN. 

I t  . 

X X 

4 1  .. 

. .  
1 *d 

1 

0 1 2 3 4 

. .  .. 1 .. : , .  
X 

Figure 1. The MC g2(x) as a function of the distance in units of the mean separation 
between sheets are illustrated for three different A values: A = 4 in ( a ) ,  A = 6 in ( b )  and 
,1=10 in (c).  
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Table 2. Normalised correlation energy against A. UkMc) and ULHNC) are obtained from 
(4), the MC formula, and (7), the HNC relation. 

0.5246 
1.093 f 0.108 1.199 

2.123 
3.126 * 0.056 3.353 

4.899 
6.398 f 0.01 1 6.176 

11.50 
16.99 * 0.06 17.52 

3. HNC calculation 

We next evaluate g2(x) as a solution to the i D H N c  equation, in which no bridge 
contribution is retained. Defining the potential of average force w2(x) as w2(x)= 
In g2(x), we have a well known set of equations 

where G ( k )  and S ( k )  are the Fourier transform of G(x)  and S(x),  respectively. S(x)  
defines the departure of w2(x) not from the bare I D  Coulomb potential -Alxl/AD but 
from the screened I D  Debye potential -A eXp(-lXl/hD), the usual procedure we have 
utilised in the study of the nodal expansion (Deutsch et a1 1976, 1981). Our HNC 

iteration procedure is summarised as follows. Let S,(x,) and So(x,) be an iteration 
input and output of S(x)  at x = x, and Ax = x , + ~  - x,. Iteration starts with the initial 
guess S,(x,) = 0. After the first iteration for a set of coordinates x,(n = 1,2, . . . , nmax), 
we obtain the output So(x,). With the aid of the extrapolation relation for the ( v  + 1)th 
input s$”+’)(x,): 

S!Y+l)(X,) = aSP)(x,) + (1 - a)s:b)(x,)  

we can continue the iteration, where a is an extrapolation parameter properly chosen 
so as to accelerate the convergency. At the end of each iteration, we check the 
convergency by the criterion 

If, after the vth iteration, the above inequality is satisfied, iteration stops. Figure 2 
shows the HNC g2(x) for different A values. It makes clear that the HNC g2(x) behaves, 
unlike the MC one, as a damped oscillation about unity, with several peaks located at 
the corresponding lattice points. As a reference, we tabulate, at the third column of 
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Figure 2. The HNC g2(x) as a function of the distance. The normalisation is the same as 
in figure 1.  Numbers on the curves represent the A values. 

table 2, the values of UN calculated from the HNC g2(x) via the relation 

We also illustrate the exact Baxter-Kunz U,, our MC U‘,Mc’ and the corresponding 
U(NHNC) in figure 3 as a function of A. The fact that U(NHNC) slightly exceeds U‘,Mc’ 

A 

Figure 3. Normalised correlation energy evaluated from the HNC iteration and the MC 

simulation, in comparison with the exact Baxter-Kunz result depicted by the full curve 
(after Totsuji 1979). The bar indicates the MC result, while the circle represents the HNC 
value. 
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does not preclude that the former stands legitimately in its own right, since the 
correlation energy is a smeared-out quantity by integration over x. In this respect, the 
comparison of two U N  has little physical meaning. 

4. Concluding remarks 

So far we have given the results for g2(x) and U,  obtained from two different 
approaches, the MC simulation and the HNC equation. In contradistinction to a 
satisfactory agreement between U‘,Mc’ and U(NHNC), the behaviour of giHNc)(x) differs 
substantially from giMc’(x): while the MC g2( x) reveals the crystalline structure, 
confirming apparently the Kunz prediction, the HNC g2(x) manifests a damped oscilla- 
tion, characteristic of a pair distribution function for a liquid. It is time to explain the 
origin of this discrepancy. As was briefly touched upon in 0 1, serious effort for 
improving the 3 ~ g ~ ( x )  by inclusion of a family of bridge graphs, important in the 
short and intermediate ranges, has been successful (Rosenfeld and Ashcroft 1979, 
Iyetomi and Ichimaru 1982, 1983). This is because a 3~ plasma remains in a liquid 
phase below some critical A value and the HNC scheme works, since it reproduces at 
least qualitatively results of numerical experiments. On the other hand, application 
of the HNC equation to the ID  OCP, which is believed to be in a crystalline state, gives 
a wrong result, in that the HNC approach gives always a damped oscillation, irrespective 
of the dimensionality. 

From the viewpoint of the nodal expansion, the essential ingredient of the HNC 

scheme is the longest convolution chains (Del Rio and De Witt 1969). It is thus of 
interest to study how the HNC result is modified by inclusion of the bridge contribution 
or by construction of a new set of equations based upon a so-called ‘short-range 
resummation’. In this respect, we note that the I D O C P  offers a sole testing ground, in 
that evaluation of bridge graphs is mostly tractable in contrast to the 3~ case. Finally, 
the problem of understanding whether the nodal expansion is applicable to a crystalline 
state or not, which is not yet proven until now at least to our knowledge, is left open 
for future study. 
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